ในฐานะที่เป็นนักวิทยาศาสตร์คอมพิวเตอร์ที่คุณอยู่ในตำแหน่งที่สมบูรณ์แบบในการเริ่มต้นการซื้อขายแบบอัลกอริทึม นี่คือสิ่งที่ฉันได้เคยเห็นที่ Quantiacs1 ซึ่งนักวิทยาศาสตร์และวิศวกรสามารถข้ามไปสู่การซื้อขายอัตโนมัติได้โดยไม่ต้องมีประสบการณ์ใด ๆ มาก่อน กล่าวอีกนัยหนึ่งสับโปรแกรมเป็นองค์ประกอบหลักที่จำเป็นในการเริ่มต้น เพื่อทำความเข้าใจเกี่ยวกับสิ่งที่ท้าทายรอคุณอยู่หลังจากสร้างระบบการซื้อขายแบบอัลกอรึทึมให้ดูที่โพสต์ Quora นี้ การสร้างระบบการซื้อขายตั้งแต่ต้นจะต้องมีพื้นฐานความรู้พื้นฐานการซื้อขายข้อมูลการตลาดและการเข้าถึงตลาด แม้ว่าจะไม่ใช่ความต้องการ แต่การเลือกแพลตฟอร์มการซื้อขายเดียวที่มีทรัพยากรเหล่านี้มากที่สุดจะช่วยให้คุณได้รับความรวดเร็วทันใจ ที่กล่าวทักษะที่คุณพัฒนาจะโอนไปยังภาษาการเขียนโปรแกรมใด ๆ และเกือบทุกแพลตฟอร์ม เชื่อหรือไม่ว่าการสร้างกลยุทธ์การซื้อขายแบบอัตโนมัติไม่ได้เป็นการบอกกล่าวเป็นผู้เชี่ยวชาญด้านการตลาด อย่างไรก็ตามการเรียนรู้กลไกพื้นฐานของตลาดจะช่วยให้คุณค้นพบกลยุทธ์การซื้อขายที่มีกำไร ตัวเลือกฟิวเจอร์และอนุพันธ์อื่น ๆ โดย John C. Hull - หนังสือเล่มแรกที่ดีสำหรับการป้อนข้อมูลทางการเงินเชิงปริมาณและเข้าใกล้จากด้านคณิตศาสตร์ การค้าเชิงปริมาณโดย Ernie Chan - เออร์นี่จันทร์นำเสนอหนังสือแนะนำที่ดีที่สุดสำหรับการซื้อขายเชิงปริมาณและนำคุณสู่ขั้นตอนการสร้างอัลกอริธึมการค้าใน MATLAB และ Excel การซื้อขายสัญญาซื้อขายล่วงหน้าขั้นสุดท้ายผ่านทางการเรียนรู้ด้วยเครื่อง - การแจกแจงแบบละเอียด 5 หน้าในการใช้โมเดลการเรียนรู้แบบง่ายๆกับตัวบ่งชี้การวิเคราะห์ทางเทคนิคที่ใช้ทั่วไป นี่เป็น PDF สำหรับอ่านหนังสือที่รวมกันโดยมีรายละเอียดเกี่ยวกับหนังสือวิดีโอหลักสูตรและฟอรัมการซื้อขาย วิธีที่ดีที่สุดในการเรียนรู้ก็คือการทำเช่นนี้และในกรณีของการซื้อขายอัตโนมัติที่เกิดขึ้นกับการสร้างแผนภูมิและการเข้ารหัส จุดเริ่มต้นที่ดีคือตัวอย่างที่มีอยู่ของระบบการซื้อขายและการจัดแสดงเทคนิคการวิเคราะห์ทางเทคนิคที่มีอยู่ นอกจากนี้นักวิทยาศาสตร์ด้านคอมพิวเตอร์ที่มีฝีมือมีขอบเพิ่มเติมในการใช้การเรียนรู้ของเครื่องจักรเพื่อการค้าอัลกอริทึม นี่คือบางส่วนของแหล่งข้อมูลเหล่านี้: TradingView - แพลตฟอร์มการสร้างแผนภูมิภาพยอดเยี่ยมด้วยตัวเอง TradingView เป็นสนามเด็กเล่นที่ยอดเยี่ยมสำหรับการรับความสะดวกสบายในการวิเคราะห์ทางเทคนิค มีประโยชน์เพิ่มเติมในการช่วยให้คุณสามารถใช้กลยุทธ์การซื้อขายหลักทรัพย์และเรียกดูแนวคิดการค้าของคนอื่น ๆ ได้ ฟอรัมการซื้อขายอัตโนมัติ - ชุมชนออนไลน์ที่ยอดเยี่ยมสำหรับการโพสต์คำถามเริ่มต้นและการหาคำตอบสำหรับปัญหาเกี่ยวกับควอนท์ทั่วไปเมื่อเริ่มต้นใช้งาน ฟอรัม Quant เป็นสถานที่ที่เยี่ยมยอดสำหรับกลยุทธ์เครื่องมือและเทคนิค การสัมมนา YouTube เกี่ยวกับแนวคิดการซื้อขายกับตัวอย่างโค้ดที่ทำงานบน Github การเรียนรู้ด้วยเครื่องจักร: สามารถดูข้อมูลเพิ่มเติมเกี่ยวกับการซื้อขายอัตโนมัติได้ที่ Quantiacs Quant Club คนส่วนใหญ่จากพื้นฐานทางวิทยาศาสตร์ (ไม่ว่าจะเป็นวิทยาการคอมพิวเตอร์หรือวิศวกรรม) ได้สัมผัสกับ Python หรือ MATLAB ซึ่งเป็นภาษาที่ได้รับความนิยมสำหรับการเงินเชิงปริมาณ Quantiacs ได้สร้างกล่องเครื่องมือโอเพนซอร์สที่ให้ข้อมูลหลังการขายย้อนหลังและ 15 ปีของข้อมูลการตลาดในอดีตได้ฟรี ส่วนที่ดีที่สุดคือทุกสิ่งทุกอย่างที่สร้างขึ้นทั้ง Python และ MATLAB ทำให้คุณสามารถเลือกพัฒนาระบบของคุณได้ นี่เป็นตัวอย่างกลยุทธ์การซื้อขายตามแนวโน้มใน MATLAB นี่คือรหัสทั้งหมดที่จำเป็นในการเรียกใช้ระบบการซื้อขายแบบอัตโนมัติซึ่งจัดแสดงทั้งพลังของ MATLAB และ Quantiacs Toolbox Quantiacs ช่วยให้คุณค้า 44 ฟิวเจอร์สและหุ้นทั้งหมดของ SampP 500 นอกจากนี้ยังมีไลบรารีเพิ่มเติมมากมายเช่น TensorFlow (Disclaimer: ฉันทำงานที่ Quantiacs) เมื่อ youre พร้อมที่จะทำเงินเป็นปริมาณที่คุณสามารถเข้าร่วมล่าสุด Quantiacs การประกวดการซื้อขายอัตโนมัติที่มีจำนวน 2,250,000 ในการลงทุนใช้ได้: คุณสามารถแข่งขันกับ quants ที่ดีที่สุด 29.3k Views middot ดู Upvotes middot ไม่ได้สำหรับการทำซ้ำคำตอบนี้ได้รับการเขียนใหม่ทั้งหมดนี่คือ 6 ฐานความรู้หลักสำหรับการสร้างระบบการซื้อขาย algorithmic คุณควรทำความคุ้นเคยกับพวกเขาทั้งหมดเพื่อสร้างระบบการซื้อขายที่มีประสิทธิภาพ คำที่ใช้อาจใช้เทคนิคเล็กน้อย แต่คุณสามารถเข้าใจได้โดย Googling หมายเหตุ: (ส่วนใหญ่) เหล่านี้ใช้ไม่ได้หากคุณต้องการทำ High Frequency Trading 1. ทฤษฎีตลาดคุณต้องเข้าใจว่าตลาดทำงานอย่างไร โดยเฉพาะอย่างยิ่งคุณควรเข้าใจความไร้ประสิทธิภาพของตลาดความสัมพันธ์ระหว่างสินทรัพย์และผลิตภัณฑ์ที่แตกต่างกันและพฤติกรรมด้านราคา ความคิดการซื้อขายเกิดจากความไร้ประสิทธิภาพของตลาด คุณจะต้องรู้วิธีประเมินความไร้ประสิทธิผลของตลาดที่ทำให้คุณได้เปรียบในการซื้อขายกับผู้ที่ไม่เป็นเช่นนั้น การออกแบบหุ่นยนต์ที่มีประสิทธิภาพช่วยสร้างความเข้าใจว่าระบบการซื้อขายอัตโนมัติทำงานอย่างไร กลยุทธ์การค้าอัลกอริธึมประกอบด้วยองค์ประกอบหลัก 3 ส่วนคือ 1) รายการ 2) การออกและ 3) การจัดตำแหน่ง คุณจะต้องออกแบบองค์ประกอบทั้ง 3 องค์ประกอบนี้โดยคำนึงถึงความไร้ประสิทธิภาพของตลาดที่คุณจับ (และไม่ใช่นี่ไม่ใช่ขั้นตอนตรงไปตรงมา) คุณไม่จำเป็นต้องรู้คณิตศาสตร์ขั้นสูง (แม้ว่าจะช่วยคุณได้หากคุณต้องการสร้างกลยุทธ์ที่ซับซ้อนขึ้น) ทักษะการคิดเชิงวิพากษ์ที่ดีและความเข้าใจที่ดีเกี่ยวกับสถิติจะนำคุณไปไกลมาก การออกแบบเกี่ยวข้องกับการทดสอบย้อนหลัง (การทดสอบความสามารถในการซื้อขายและความทนทาน) และการเพิ่มประสิทธิภาพ (การเพิ่มประสิทธิภาพด้วยการปรับเส้นโค้งน้อยที่สุด) คุณจำเป็นต้องรู้วิธีจัดการพอร์ตการลงทุนของกลยุทธ์การค้าอัลกอริทึมด้วย กลยุทธ์อาจมีการเสริมหรือขัดแย้งกันอาจทำให้เกิดการเพิ่มขึ้นของความเสี่ยงหรือการป้องกันความเสี่ยงที่ไม่พึงประสงค์ การจัดสรรทุนมีความสำคัญเช่นกันเช่นคุณแบ่งเงินทุนออกเท่า ๆ กันในช่วงเวลาปกติหรือให้รางวัลผู้ชนะด้วยเงินทุนมากขึ้นหากคุณรู้ว่าผลิตภัณฑ์ใดที่คุณต้องการทำการค้าหาแพลตฟอร์มการซื้อขายที่เหมาะสมสำหรับผลิตภัณฑ์เหล่านี้ จากนั้นเรียนรู้ภาษา API การเขียนโปรแกรมของเครื่องมือทดสอบแพลตฟอร์มลัดนี้ ถ้าคุณเริ่มต้นออกไปฉันขอแนะนำ Quantopian (หุ้นเท่านั้น) Quantconnect (หุ้นและ FX) หรือ Metatrader 4 (FX และ CFDs ในดัชนีหุ้นหุ้นและสินค้าโภคภัณฑ์) ภาษาโปรแกรมที่ใช้คือ Python, C และ MQL4 ตามลำดับ 4. การจัดการข้อมูลขยะมูลฝอยในถังขยะ ข้อมูลที่ไม่ถูกต้องนำไปสู่ผลลัพธ์การทดสอบที่ไม่ถูกต้อง เราต้องการข้อมูลที่สะอาดพอสมควรสำหรับการทดสอบที่ถูกต้อง การทำความสะอาดข้อมูลเป็นการแลกเปลี่ยนระหว่างต้นทุนและความถูกต้อง ถ้าคุณต้องการข้อมูลที่ถูกต้องมากขึ้นคุณจำเป็นต้องใช้เวลามาก (เวลาเงิน) ทำความสะอาด ปัญหาบางอย่างที่ทำให้ข้อมูลที่สกปรกรวมถึงข้อมูลที่ขาดหายไปข้อมูลที่ซ้ำกันข้อมูลที่ไม่ถูกต้อง (bad ticks) ประเด็นอื่น ๆ ที่นำไปสู่ข้อมูลที่ไม่ถูกต้อง ได้แก่ การจ่ายเงินปันผลการแยกหุ้นและการซื้อขายสัญญาซื้อขายล่วงหน้าเป็นต้น 5. การบริหารความเสี่ยงมี 2 ประเภทหลัก ได้แก่ ความเสี่ยงด้านตลาดและความเสี่ยงด้านปฏิบัติการ ความเสี่ยงด้านตลาดเกี่ยวข้องกับความเสี่ยงที่เกี่ยวข้องกับกลยุทธ์การซื้อขายของคุณ จะพิจารณากรณีที่เลวร้ายที่สุดสถานการณ์ถ้าเกิดเหตุการณ์หงส์ดำเช่นสงครามโลกครั้งที่ 3 เกิดขึ้นคุณได้ป้องกันความเสี่ยงที่ไม่พึงประสงค์ตำแหน่งของคุณสูงเกินไปหรือไม่นอกจากการจัดการความเสี่ยงด้านตลาดคุณต้องดูความเสี่ยงด้านปฏิบัติการ ความล้มเหลวของระบบการสูญเสียการเชื่อมต่ออินเทอร์เน็ตอัลกอริธึมการประมวลผลที่ไม่ดี (นำไปสู่ราคาที่มีการใช้งานไม่ดีหรือพลาดการเทรดเนื่องจากไม่สามารถจัดการกับความล่าช้าได้) และการโจรกรรมโดยแฮกเกอร์เป็นเรื่องจริง 6. การดำเนินการแบบมีส่วนร่วม Backtesting และการซื้อขายสดแตกต่างกันมาก คุณจะต้องเลือกโบรกเกอร์ที่เหมาะสม (MM vs STP และ ECN) ข่าว Forex Market กับ Forex Trading Forums ความคิดเห็น Forex Forex Brokers เป็นเพื่อนที่ดีที่สุดของคุณอ่านบทวิจารณ์นายหน้าที่นั่น คุณต้องมีโครงสร้างพื้นฐานที่เหมาะสม (การรักษาความปลอดภัย VPN และการจัดการขัดข้อง ฯลฯ ) และขั้นตอนการประเมินผล (ตรวจสอบประสิทธิภาพของโรบอตและวิเคราะห์ข้อมูลเหล่านี้โดยคำนึงถึงประสิทธิภาพของตลาดที่ลดลง) เพื่อจัดการหุ่นของคุณตลอดอายุการใช้งาน คุณจำเป็นต้องทราบเมื่อต้องเข้าไปแทรกแซง (modifyupdateshutdownturn บนหุ่นยนต์ของคุณ) และเมื่อไม่ต้องการ การประเมินผลและการเพิ่มประสิทธิภาพของกลยุทธ์การซื้อขาย Pardo (ข้อมูลเชิงลึกที่ดีเกี่ยวกับวิธีการสร้างและทดสอบกลยุทธ์การซื้อขาย) การค้าขายทางของคุณเพื่อความเป็นอิสระทางการเงิน Van K Tharp (ชื่อเรื่องเหยื่อไร้สาระคลิกหนังสือเล่มนี้เป็นภาพรวมที่ดีในระบบการค้าเชิงกล) Quantitative Trading Ernest การค้าและการแลกเปลี่ยน: โครงสร้างจุลภาคของตลาดสำหรับผู้ปฏิบัติงาน Larry Harris (โครงสร้างจุลภาคในตลาดเป็นศาสตร์แห่งการแลกเปลี่ยนความรู้และสิ่งที่เกิดขึ้นเมื่อมีการค้าขาย) เป็นสิ่งสำคัญที่ต้องทราบข้อมูลนี้ แม้ว่าคุณจะเพิ่งเริ่มออก) อัลกอริทึมการค้าอัลฟา DMA แบร์รี่จอห์นสัน (หลั่งแสงในขั้นตอนวิธีการดำเนินการธนาคารนี้ไม่ได้ใช้โดยตรงการค้า algo ของคุณ แต่เป็นที่ดีที่จะรู้) Quants Scott Patterson (War เรื่องราวของบาง quants ด้านบนดี เมื่ออ่านก่อนนอน) Quantopian (รหัสการวิจัยและอภิปรายความคิดเห็นกับชุมชนใช้ Python) พื้นฐานของ Algo Trading Algo Trading101 (คำเตือน: ฉันเป็นเจ้าของ sitecourse นี้ เรียนรู้ทฤษฎีการออกแบบหุ่นยนต์ทฤษฎีตลาดและการเข้ารหัส (เรียนรู้แนวคิดการซื้อขายและทฤษฎีการทำ backtesting พวกเขาเพิ่งพัฒนา backtesting และแพลตฟอร์มการซื้อขายของตัวเองเพื่อให้ส่วนนี้ยังใหม่กับฉัน แต่ฐานความรู้ของพวกเขาเกี่ยวกับแนวคิดการซื้อขายเป็นสิ่งที่ดี) แนะนำ BlogsForums (รวมถึงการเงิน , การซื้อขายและฟอรัมการซื้อขายแบบอัลกอฮอล): ภาษาโปรแกรมที่แนะนำ: หากคุณรู้จักผลิตภัณฑ์ที่ต้องการซื้อขายโปรดค้นหาแพลตฟอร์มการซื้อขายที่เหมาะสมสำหรับผลิตภัณฑ์เหล่านี้ จากนั้นเรียนรู้ภาษา API การเขียนโปรแกรมของเครื่องมือทดสอบแพลตฟอร์มดังกล่าว ถ้าคุณเริ่มต้นออกไปฉันขอแนะนำ Quantopian (หุ้นเท่านั้น) Quantconnect (หุ้นและ FX) หรือ Metatrader 4 (FX และ CFDs ในดัชนีหุ้นหุ้นและสินค้าโภคภัณฑ์) ภาษาโปรแกรมที่ใช้คือ Python, C และ MQL4 ตามลำดับ 17.1k Views middot ดูคำ UpVotes middot Not for Reproduction หากการลงทุนเป็นกระบวนการแล้วข้อสรุปเชิงตรรกะคือระบบอัตโนมัติ อัลกอริทึมเป็นอะไรอย่างอื่นนอกเหนือจากการวางรากฐานที่สำคัญของปรัชญาพื้นฐาน นี่คือการแสดงออกทางสีหน้าของขอบการซื้อขายขอบการซื้อขาย Win การสูญเสียรายได้เฉลี่ยที่สูญเสียไปมันทำให้ชีวิตฉันและวิธีที่ฉันเข้าใกล้ตลาด แสดงภาพการกระจายของคุณเสมอ มันจะช่วยให้คุณชี้แจงแนวคิดของคุณให้กระจ่างต่อข้อบกพร่องเชิงตรรกะของคุณ แต่ก่อนอื่นเราควรเริ่มต้นด้วยปรัชญาและความเชื่อที่เกิดขึ้น 1. ทำไมมันสำคัญที่จะชี้แจงความเชื่อของคุณเราจึงค้าความเชื่อของเรา ที่สำคัญเราค้าความเชื่อทางจิตใต้สำนึกของเรา หากคุณไม่ทราบว่าคุณเป็นใครการตลาดเป็นสถานที่ที่มีราคาแพงเพื่อหาข้อผิดพลาดบางอย่าง Adam Smith หลาย ๆ คนไม่ได้ใช้เวลาในการกระตุ้นความเชื่อของตนและใช้ความเชื่อที่ยืมมา คำถามที่ไม่ได้รับคำตอบและตรรกะที่ผิดพลาดคือเหตุผลที่ทำให้ผู้ค้าระบบบางรายปรับแต่งระบบรอบการเบิกจ่ายแต่ละครั้ง ฉันเคยเป็นเช่นนั้นเป็นเวลาหลายปี การออกกำลังกายกระตุ้นความเชื่อ: งาน Byron Katie หลังจากที่ฉันได้รับความเชื่อมั่น 2 ครั้งต่อวันเป็นเวลา 100 วันแล้วฉันสามารถอธิบายสไตล์ของฉันกับคุณยาย 5 ได้ ถามตัวเองว่าทำไมและดำน้ำลึกขึ้น มีความคิดสองประเภทและเราต้องการทั้งสองแบบในเวลาที่ต่างกัน: กว้างไกลเพื่อสำรวจแนวความคิดความคิดเทคนิค ฯลฯ Subtractive: เพื่อให้ง่ายขึ้นและชี้แจงแนวคิดผู้ค้าระบบที่ล้มเหลวในการหักบัญชีมี วิธีปั่น พวกเขาโยนทุกสิ่งในกลยุทธ์ของพวกเขาและผสมผสานกับ optimizer การย้ายที่ไม่ดี: ความซับซ้อนเป็นรูปแบบของความเกียจคร้าน พวกเขายากรหัสทุกอย่างและจากนั้นโชคดี patching traders quotot อีเทอร์สสิสต์เข้าใจว่ามันเป็นการเต้นรำระหว่างระยะเวลาของการสำรวจและเวลาของการทำให้ง่ายขึ้นหลักยาก เรื่องง่ายไม่ใช่เรื่องง่ายเวลาพาฉันไป 3,873 ชั่วโมงและฉันยอมรับว่ามันอาจใช้เวลาถึงชีวิต 2 เวลาที่คุณรู้ว่าการค้าขายทำกำไรได้หรือไม่ก็คือหลังจากทางออกขวาดังนั้นให้เน้นตรรกะทางออกก่อน ในความเห็นของฉันเหตุผลหลักที่ทำให้ผู้คนล้มเหลวในการทำให้กลยุทธ์ของตนโดยอัตโนมัติคือการมุ่งเน้นที่รายการมากเกินไปและไม่เพียงพอในการออก คุณภาพของช่องทางออกของคุณจะเป็นตัวกำหนดรูปแบบการกระจาย PampL ของคุณดูแผนภูมิด้านบนใช้เวลาในการหยุดการขาดทุนอย่างมากเนื่องจากมีผลกระทบต่อ 4 องค์ประกอบของระบบการซื้อขายของคุณคือ Win สูญเสียการสูญเสียเฉลี่ยความถี่ในการซื้อขายคุณภาพของระบบของคุณจะพิจารณาจากคุณภาพของ PampL ขาดทุนของคุณหยุด, 3 เงินจะทำในโมดูลการจัดการเงินน้ำหนักที่เท่าเทียมกันเป็นรูปแบบของความเกียจคร้าน ขนาดของการเดิมพันของคุณจะเป็นตัวกำหนดรูปร่างของผลตอบแทนของคุณ ทำความเข้าใจว่ากลยุทธ์ของคุณใช้งานได้ไม่ดีและลดขนาด ในทางตรงกันข้ามให้เพิ่มขนาดเมื่อทำงาน ฉันจะเขียนเพิ่มเติมเกี่ยวกับการกำหนดขนาดตำแหน่งบนเว็บไซต์ของฉัน แต่มีทรัพยากรมากมายทั่วอินเทอร์เน็ต 3. รายการสุดท้ายและอย่างน้อยที่สุดหลังจากที่คุณได้ดูฤดูกาลเต็มรูปแบบของแม่บ้านที่พูดพาดพิงถึงหรือเบ็ดเตล็ดที่มีข้อความว่ามีช็อคโกแลตบางตัวเดินสุนัขเลี้ยง ปลาที่เรียกว่าแม่ของคุณแล้วก็ถึงเวลาที่จะคิดเกี่ยวกับการเข้า อ่านสูตรด้านบนการเลือกสต็อกไม่ใช่องค์ประกอบหลัก หนึ่งอาจเถียงว่าการเลือกหุ้นที่เหมาะสมอาจเพิ่มขึ้นชนะ บางที แต่ก็ไม่มีค่าถ้าไม่มีนโยบายออกที่เหมาะสมหรือการจัดการเงิน ในแง่น่าจะเป็นหลังจากที่คุณได้รับการแก้ไขทางออกแล้วรายการจะกลายเป็นความน่าจะเป็นระดับการเลื่อน 4. สิ่งที่ควรเน้นเมื่อทดสอบไม่มีค่าเฉลี่ยขยับขลังค่าบ่งชี้ เมื่อทดสอบระบบของคุณให้โฟกัสไปที่สามประการ: False positives: ทำให้ประสิทธิภาพการทำงานลดลง หาวิธีที่เรียบง่าย (สง่างาม) เพื่อลดการทำงานเหล่านี้ทำงานในช่วงตรรกะเมื่อกลยุทธ์ไม่ทำงาน: ไม่มีกลยุทธ์ทำงานตลอดเวลา เตรียมพร้อมรับมือและเตรียมแผนฉุกเฉินล่วงหน้า การปรับระบบในระหว่างการเบิกเป็นเหมือนการเรียนรู้ที่จะว่ายน้ำในพายุการซื้อพลังงานและการจัดการเงิน: นี่เป็นอีกหนึ่งความเป็นจริงที่เคาน์เตอร์ที่ใช้งานง่าย ระบบของคุณอาจสร้างไอเดีย แต่คุณไม่มีอำนาจในการซื้อเพื่อดำเนินการ โปรดดูแผนภูมิด้านบนที่ฉันสร้างกลยุทธ์ทั้งหมดจากด้านสั้น ๆ ก่อน การทดสอบประสิทธิภาพที่ดีที่สุดสำหรับยุทธศาสตร์คือด้านสั้น: ความหนาแน่นของไดรฟ์ข้อมูลที่สั้นลงวัฏจักรที่สั้นลงแพลตฟอร์มฉันเริ่มต้นจากนักพัฒนา WealthLab มีไลบรารีปรับขนาดที่น่าสนใจ นี่คือแพลตฟอร์มเดียวที่ช่วยให้สามารถ backtetsing และเพิ่มประสิทธิภาพได้อย่างกว้างขวาง ฉันทดสอบแนวคิดทั้งหมดของ WLD ขอเเนะนำ. มีข้อเสียเปรียบเพียงอย่างเดียวก็ไม่ได้เชื่อมต่อ sizer ตำแหน่งกับการซื้อขายสดจริง Amibroker เป็นสิ่งที่ดีเกินไป มี API ที่เชื่อมต่อกับโบรกเกอร์ Interactive และเครื่องตรวจจับการเคลื่อนไหวที่เหมาะสม เรามีโปรแกรม MetaTrader for Forex แต่น่าเสียดายที่ Metatrader ได้ไปลงหลุมกระต่ายความซับซ้อน มีชุมชนที่มีชีวิตชีวาอยู่ที่นั่น MatLab ซึ่งเป็นอาวุธที่เหมาะสำหรับวิศวกร ไม่มีความเห็น. Tradestation Perry Kaufman เขียนหนังสือดีๆเกี่ยวกับ TS มีชุมชนที่มีชีวิตชีวาอยู่ที่นั่น มันง่ายกว่าแพลตฟอร์มอื่น ๆ ส่วนใหญ่คำแนะนำขั้นสุดท้ายถ้าคุณต้องการเรียนรู้ที่จะว่ายน้ำคุณต้องกระโดดลงไปในน้ำ สามเณรหลายคนต้องการที่จะส่งความคิดของพวกเขาพันล้านดอลลาร์ไปยังบางโปรแกรมเมอร์ราคาถูกบางแห่ง ไม่ได้ผลเช่นนั้น คุณจำเป็นต้องเรียนรู้ภาษาเหตุผล แม้ว่าจะเป็นหัวข้อกว้าง ๆ ที่อ้างอิงถึงอัลกอริทึมของอาคารการตั้งค่าโครงสร้างพื้นฐานการจัดสรรสินทรัพย์และการบริหารความเสี่ยง แต่ฉันจะมุ่งความสนใจไปที่ส่วนแรกของการทำงานควรทำอย่างไร ในการสร้างอัลกอริธึมของเราเองและทำสิ่งที่ถูกต้อง 1. ยุทธศาสตร์การสร้าง ประเด็นสำคัญบางประการที่ควรทราบคือ: จับแนวโน้มใหญ่ - กลยุทธ์ที่ดีในทุกกรณีควรทำเงินเมื่อตลาดมีแนวโน้มสูง ตลาดมีแนวโน้มที่ดีซึ่งกินเวลาเพียง 15-20 เท่าของเวลา แต่นี่เป็นเวลาที่แมวและสุนัขทั้งหมด (พ่อค้าจากทุกกรอบเวลาวันรุ่งขึ้นรายวันรายสัปดาห์ระยะยาว) กำลังออกไปช้อปปิ้งและพวกเขาทั้งหมด มีธีมเดียว ผู้ค้าจำนวนมากยังสร้างกลยุทธ์การพลิกกลับหมายถึงซึ่งพวกเขาพยายามที่จะตัดสินเงื่อนไขเมื่อราคามีการเคลื่อนไหวห่างไกลจากค่าเฉลี่ยและใช้การค้ากับแนวโน้ม แต่ควรสร้างขึ้นเมื่อคุณสร้างและซื้อขายระบบแนวโน้มต่อไปนี้ได้ดี . อัตราการซ้อนขึ้น - คนมักทำงานต่อการพยายามสร้างระบบที่มีอัตราส่วนเงินชนะเลิศสูง แต่นั่นไม่ใช่วิธีการที่เหมาะสม ตัวอย่างเช่น algo กับผู้ชนะ 70 คนโดยมีกำไรเฉลี่ย 100 ต่อการค้าและการสูญเสียเฉลี่ย 200 ต่อการค้าจะทำให้ได้ 100 ต่อ 10 ธุรกิจการค้า (10trade net) แต่อัลกอร์กับผู้ชนะ 30 มีกำไรเฉลี่ย 500 ต่อการค้าและการสูญเสีย 100 ต่อการค้าจะมีกำไรสุทธิ 800 สำหรับ 10 ธุรกิจการค้า (80trade) ดังนั้นจึงไม่จำเป็นที่อัตราส่วน winloss ควรจะดีค่อนข้างจะเป็นอัตราเดิมพันของซ้อนขึ้นซึ่งควรจะดีกว่า นี้ไปโดยกล่าว quotKeep ขาดทุนเล็ก แต่ให้ผู้ชนะของคุณ runquot quotIn การลงทุนสิ่งที่สะดวกสบายจะไม่ค่อยเกิดผลกำไร - Robert Arnott Drawdown - การเบิกถอนเป็นสิ่งที่หลีกเลี่ยงไม่ได้หากคุณกำลังติดตามกลยุทธ์ประเภทใด ๆ ดังนั้นในขณะที่การออกแบบ algo don039t พยายามที่จะลดการเบิกหรือทำสภาพที่กำหนดเองบางอย่างที่จะดูแลการเบิกที่ เงื่อนไขที่เฉพาะเจาะจงนี้ในอนาคตอาจทำหน้าที่เป็นอุปสรรคในการดึงดูดแนวโน้มใหญ่ ๆ และการกระทำของคุณอาจมีประสิทธิภาพไม่ดี การบริหารความเสี่ยง - เมื่อสร้างยุทธศาสตร์คุณควรมีประตูทางออกทุกอย่างที่ตลาดเลือกที่จะทำ ตลาดเป็นสถานที่ที่น่าจะเป็นไปได้และคุณต้องออกแบบอัลกอฮ์เพื่อให้คุณออกจากการค้าโดยเร็วที่สุดเท่าที่จะเป็นไปได้หากไม่เหมาะกับความเสี่ยงของคุณ โดยปกติจะเป็นที่ถกเถียงกันอยู่ว่าคุณต้องเสี่ยง 1-2 ของเงินทุนในแต่ละการค้าและเป็นที่ดีที่สุดในหลายวิธีแม้ว่าคุณจะได้รับ arnd 10 การค้าเท็จในการสืบทอดทุนของคุณจะลงไปโดยเฉพาะ 20 แต่นี้ไม่ได้เป็น กรณีในสถานการณ์ตลาดที่เกิดขึ้นจริง บางธุรกิจการค้าที่สูญเสียจะอยู่ระหว่าง 0-1 ในขณะที่บางรายอาจไปที่ 3-4 ดังนั้นจึงควรกำหนดทุนการสูญเสียโดยเฉลี่ยต่อการค้าและทุนสูงสุดที่คุณสามารถหลวมในการซื้อขายได้เนื่องจากตลาดมีการสุ่มอย่างสมบูรณ์และสามารถตัดสินได้ . quotEvery ครั้งในขณะที่ตลาดทำบางสิ่งบางอย่างโง่ดังนั้นมันจะใช้เวลาลมหายใจของคุณ away. quot - Jim Cramer 2 การทดสอบและเพิ่มประสิทธิภาพยุบกลยุทธ์ เมื่อเรากำลังทดสอบกลยุทธ์เกี่ยวกับข้อมูลทางประวัติศาสตร์เราอยู่ภายใต้สมมติฐานว่าคำสั่งซื้อจะถูกดำเนินการในราคาที่กำหนดไว้ล่วงหน้าโดย algo แต่ตอนนี้ก็ไม่เป็นเช่นนั้นเพราะเราต้องจัดการกับผู้ผลิตในตลาดและ HFT algo0 ในขณะนี้ คำสั่งซื้อของคุณในโลกของวันนี้จะไม่ถูกเรียกใช้ในราคาที่ต้องการและจะมีการลื่นไถล นี้จะต้องรวมอยู่ในการทดสอบ ผลกระทบต่อตลาด: ปริมาณการซื้อขายโดย algo เป็นอีกหนึ่งปัจจัยสำคัญที่จะต้องพิจารณาในขณะที่ทำ back-testing และรวบรวมผลการดำเนินงานในอดีต เมื่อปริมาณเพิ่มขึ้นคำสั่งซื้อที่วางไว้โดย algo จะมีผลกระทบต่อตลาดมากและราคาเฉลี่ยของคำสั่งซื้อที่เต็มไปจะแตกต่างกันมาก algo ของคุณอาจให้ผลที่แตกต่างกันอย่างสมบูรณ์ในสภาวะตลาดที่แท้จริงถ้าคุณจะไม่ศึกษาพลวัตของไดรฟ์ข้อมูลที่ algo ของคุณมี การเพิ่มประสิทธิภาพ: ผู้ค้าส่วนใหญ่แนะนำให้คุณอย่าปรับเส้นโค้งและการเพิ่มประสิทธิภาพและถูกต้องเนื่องจากตลาดมีการทำงานของตัวแปรสุ่มและไม่มีสถานการณ์ใดที่จะเหมือนกัน ดังนั้นการเพิ่มประสิทธิภาพพารามิเตอร์สำหรับแต่ละสถานการณ์เป็นความคิดที่ไม่ดี ฉันขอแนะนำให้คุณไปที่ Zonal Optimization เป็นเทคนิคที่ฉันทำตามซื้อโซนระบุซึ่งมีลักษณะคล้ายกันในแง่ของความผันผวนและปริมาณ เพิ่มประสิทธิภาพพื้นที่เหล่านี้แยกกันมากกว่าการเพิ่มประสิทธิภาพตลอดช่วงเวลา ข้างต้นเป็นขั้นตอนพื้นฐานและสำคัญที่สุดบางส่วนที่ฉันทำตามเมื่อแปลงความคิดขั้นพื้นฐานเป็นอัลกอริทึมและตรวจสอบความถูกต้องของ it0 ทุกคนมีสติปัญญาในการปฏิบัติตามตลาดหุ้น ถ้าคุณทำมันผ่านทางคณิตศาสตร์เกรดห้าคุณสามารถทำมันได้ quotPeter Lynch 17.3k Views middot ดูคำ UpVotes middot Not for Reproduction คำตอบสั้น ๆ : เรียนรู้เกี่ยวกับคณิตศาสตร์ที่ใช้กับการซื้อขายโครงสร้างของตลาดและเลือกที่จะเป็นผู้จัดทำระบบเครือข่ายที่กระจายตัวที่สุด มีสามแทร็กที่อาจเป็นคู่ขนานซึ่งสามารถนำมาเรียนรู้การซื้อขายอัลกอริธึมจากรอยขีดข่วนได้โดยขึ้นอยู่กับวัตถุประสงค์สูงสุดที่คุณต้องการเรียนรู้ ที่นี่พวกเขาอยู่ในลำดับที่เพิ่มขึ้นของความยากลำบากซึ่งยังมีความสัมพันธ์กับเท่าใดก็จะกลายเป็นส่วนหนึ่งของชีวิตของคุณ คนก่อนหน้านี้จะเปิดโอกาสสำหรับคนต่อไปนี้ คุณสามารถหยุดที่ขั้นตอนใด ๆ ไปพร้อมกันเมื่อคุณได้เรียนรู้มากพอหรือได้งานทำ ถ้าคุณต้องการที่จะ quant, ส่วนใหญ่ใช้ซอฟต์แวร์คณิตศาสตร์และไม่จริงเป็นโปรแกรมเมอร์ของระบบ algo แล้วคำตอบสั้น ๆ จะได้รับปริญญาเอกในคณิตศาสตร์ฟิสิกส์หรือหัวข้อวิศวกรรมคณิตศาสตร์บางหนักที่เกี่ยวข้อง พยายามที่จะได้รับการฝึกงานที่กองทุนป้องกันความเสี่ยงชั้นนำร้านค้า prop หรือธนาคารเพื่อการลงทุน ถ้าคุณสามารถทำงานโดย บริษัท ที่ประสบความสำเร็จแล้วคุณจะได้รับการสอนมีอย่างอื่นมันก็ไม่ได้เกิดขึ้น อย่างไรก็ตามในกรณีใด ๆ คุณควรจะจบส่วน 039Self Study039 ด้านล่างเพื่อให้แน่ใจว่าคุณต้องการผ่านความพยายามในการรับปริญญาเอก ถ้าคุณไม่ได้เป็นอัจฉริยะหากคุณไม่ได้รับปริญญาเอกคุณจะไม่สามารถแข่งขันกับผู้ที่ทำงานได้เว้นแต่คุณจะเชี่ยวชาญในการเขียนโปรแกรมระบบการซื้อขาย ถ้าคุณต้องการที่จะเพิ่มเติมเกี่ยวกับด้านการเขียนโปรแกรมลองใช้สำหรับการจ้างงานหลังจากแต่ละขั้นตอน แต่ไม่บ่อยกว่าปีละครั้งต่อ บริษัท การศึกษาด้วยตนเองขั้นตอนแรกคือการเข้าใจว่าการซื้อขายแบบอัลกอริทึมคืออะไรและต้องใช้ระบบใดบ้างที่สนับสนุน I039d แนะนำให้อ่านผ่านแอ็พพลิเคชัน DMAquot (Johnson, 2010) ซึ่งเป็นสิ่งที่ผมเองแนะนำและสามารถแนะนำได้ ที่จะช่วยให้คุณเข้าใจในระดับพื้นฐาน ถัดไปคุณควรตั้งค่าหนังสือสั่งซื้อของคุณเองการจำลองข้อมูลตลาดอย่างง่ายและการใช้งานอัลกอริธึมหนึ่งตัวในเครื่องของคุณด้วย Java หรือ CC สำหรับเครดิตพิเศษที่จะช่วยในการรับงานคุณควรเขียนชั้นการสื่อสารเครือข่ายของคุณเองตั้งแต่เริ่มต้นด้วย เมื่อถึงจุดนี้คุณอาจจะสามารถตอบคำถามได้ด้วยตัวคุณเอง แต่สำหรับความสมบูรณ์และความอยากรู้อยากเห็นให้ดำเนินการต่อไป: หนังสือเล่มต่อไปที่จะแก้ไขปัญหาคือ quotTrading amp แลกเปลี่ยน: Microstructure ตลาดสำหรับ Practitionersquot (Harris, 2003) นี้จะเข้าสู่รายละเอียดปลีกย่อยของวิธีการตลาดทำงาน เป็นหนังสือ I039ve อ่านอื่น แต่ไม่ได้ศึกษาอย่างสมบูรณ์เพราะฉันเป็นโปรแกรมเมอร์ระบบไม่ใช่ quant หรือผู้จัดการด้านธุรกิจ ท้ายที่สุดถ้าคุณต้องการเริ่มต้นเรียนรู้คณิตศาสตร์เกี่ยวกับการทำงานของตลาดทำงานผ่านข้อความและปัญหาใน quotOptions, Futures และ Derivativesquot (Hull, 2003) ฉันทำมันผ่านประมาณครึ่งหนึ่งของตำราที่ทั้งในการเตรียมการหรือเป็นส่วนหนึ่งของการฝึกอบรมภายในที่หนึ่งในนายจ้างเก่าของฉัน ฉันเชื่อว่าฉันเป็นคนแรกที่ค้นพบเกี่ยวกับหนังสือเล่มนี้เพราะมันเป็นข้อเสนอแนะหรือต้องอ่านสำหรับหนึ่งในโปรแกรมคอมพิวเตอร์ MS คณิตศาสตร์ที่ดี เพื่อให้โอกาสที่ดีกว่าในการจ้างงานผ่านโปรแกรมป้อนข้อมูลใหม่ให้เสร็จสิ้นโปรแกรม MS Financial Mathematics หากคุณต้องการเป็นโปรแกรมเมอร์สำหรับแพลตฟอร์มการซื้อขายหรือทีมงานของ Quants ถ้าคุณต้องการที่จะเป็นหนึ่งในการออกแบบ algos แล้วคุณจะต้องใช้เส้นทาง PhD อธิบายก่อนหน้านี้ หากคุณยังเรียนจบไม่ได้แล้วให้พยายามเข้ารับการฝึกงานที่สถานที่เดียวกัน การจ้างงานไม่ว่าคุณจะเรียนหนังสือและโรงเรียนเท่าใดไม่มีอะไรจะเปรียบเทียบกับรายละเอียดเล็กน้อยที่คุณเรียนรู้ขณะที่ทำงานให้ บริษัท หากคุณไม่ทราบกรณีขอบทั้งหมดและรู้ว่าเมื่อโมเดลของคุณหยุดทำงานคุณจะสูญเสียเงิน ฉันหวังว่าจะตอบคำถามของคุณและในระหว่างการเรียนรู้คุณจะค้นพบว่าคุณต้องการเปลี่ยนจากการศึกษาเป็นงานประจำวันจริงหรือไม่ 18.6k Views middot ดูคำ Upvotes middot Not for Reproduction ฉันมีภูมิหลังในการเป็นโปรแกรมเมอร์และตั้งทีมงานที่มีความคลั่งไคล้ก่อนที่ฉันจะเริ่มดูการซื้อขายแบบอัลกอลิกึม โลกของการค้าอัลกอริธึมทำให้ฉันหลงใหล แต่ก็สามารถครอบงำได้เล็กน้อย ฉันเริ่มได้มุมมองโดยการดำน้ำในแพลตฟอร์ม Quantopian การดูชุดการบรรยายแบบควอนตัมและใช้ระบบการซื้อขายแบบ algo ในชุมชนของฉันและปรับเปลี่ยนได้ในสภาพแวดล้อมของพวกเขา เหมือนที่ด้านล่าง: ฉันก็ตระหนักว่าจะได้รับในเร็วมากขึ้นฉันต้องพบคนที่รักการสร้างกลยุทธ์การซื้อขาย แต่ไม่สามารถโปรแกรม - เพื่อให้ตรงกับตัวเองเป็นผู้จัดการทีมเปรียวและโปรแกรมเมอร์ของระบบการค้า ดังนั้นฉันจึงได้เขียนหนังสือเกี่ยวกับการสร้างทีมเพื่อใช้ขั้นตอนวิธีการซื้อขายของคุณ ระบบการซื้อขายอาคารวิธีเปรียว: วิธีการสร้างระบบการซื้อขายอัลกอริธึมชนะเป็นทีม ในชุมชน Quantopian ฉันเห็นคนที่เข้าใจทางการเงินมองหาคนที่จะใช้กลยุทธ์การซื้อขายของพวกเขา แต่ที่กลัวที่จะขอให้โปรแกรมเมอร์ที่จะใช้ความคิดของพวกเขา เนื่องจากพวกเขาอาจเริ่มใช้แนวคิดการซื้อขายได้โดยปราศจากพวกเขา ฉันแก้ไขปัญหานี้ในหนังสือของฉัน เพื่อหลีกเลี่ยงโปรแกรมเมอร์ที่ใช้งานแนวคิดของคุณ: สร้างข้อกำหนดสำหรับแนวคิดการค้าของคุณโดยใช้กรอบรหัสที่เหมาะสำหรับประเภทกลยุทธ์ที่คุณต้องการพัฒนา อาจเป็นเรื่องยาก แต่เมื่อคุณรู้ขั้นตอนทั้งหมดของทารกและวิธีการที่พวกเขาพอดีกันจะค่อนข้างตรงไปตรงมาและสนุกในการจัดการหากคุณชอบคำตอบนี้โปรดลงคะแนนและปฏิบัติตาม 2.7k Views middot ดูคำ UpVotes middot ไม่สำหรับการทำซ้ำดู TradeLink (C) หรือ ActiveQuant (Java) รหัส TradeLink0 มีความสง่างามมากขึ้น I039m พิมพ์นี้บนโทรศัพท์มือถือดังนั้นโปรดแก้ตัวความกะทัดรัดของฉัน โดยทั่วไปดูสิ่งที่มาใน vs สิ่งที่ออกไปเป็นวิธีเริ่มต้นเพื่อกรอบปัญหา ใน. ข้อมูลการตลาด, เหตุการณ์ exhangemarket (การดำเนินการกับธุรกิจการค้าที่ระบบของคุณวาง, acks, ปฏิเสธ, การซื้อขายหยุดการแจ้งเตือน ฯลฯ ) ออก. การสั่งซื้อการปรับเปลี่ยน ordes quotBuy 100 15.5, IOCquot เป็นต้น IOC ทันทีหรือยกเลิก ในระหว่าง. การตัดสินใจเชิงกลยุทธ์บนพื้นฐานของข้อมูลที่รวบรวมจากข้อมูลเรียลไทม์ร่วมกับข้อมูลในอดีตและข้อมูลอื่น ๆ (คำสั่ง trader0 จาก GUI ของเขาเพื่อการค้าที่ไม่ก้าวร้าวและอื่น ๆ ) สิ่งที่ชอบ สั่งซื้อแก้ไขคำสั่งซื้อที่มีอยู่ ฯลฯ ตอนนี้คุณสามารถเริ่มต้นเพื่ออธิบายถึงสถาปัตยกรรมทางเทคนิคของระบบดังกล่าว สิ่งสำคัญคือความสามารถในการแสดงกลยุทธ์ได้อย่างง่ายดายแม้จะมีความซับซ้อนของการประมวลผลเหตุการณ์ (มีหลายสภาวะการแข่งขันที่น่าสนใจซึ่งอาจทำให้ระบบของคุณสับสนกับการเข้าสู่สภาวะตลาดที่คุณสั่งซื้อได้) ฉันเคยทำเช่นนี้เพื่อหาเลี้ยงชีพและอาจจะไปได้ไม่รู้จบ แต่การพิมพ์บนโทรศัพท์มือถือเป็นตัวยับยั้ง หวังว่าคุณจะพบว่ามีประโยชน์ ติดต่อฉันหากคุณต้องการคำแนะนำเพิ่มเติม 21.3k Views middot ดูคำ Upvotes middot ไม่ได้สำหรับการสืบพันธุ์ Stephen Steinberg ผู้ก่อตั้งกรีฑาดิบก่อตั้ง Capitol Startup Interactive โบรกเกอร์ Interactive โบรกเกอร์มีแพลตฟอร์มการลงทุนจริงๆบนรอยและการกำหนดราคาที่เหมาะสม It 's แน่นอนเครื่องมือที่มีประสิทธิภาพเพื่อให้คุณอาจจะได้รับทางเลือกที่ถูกกว่าจากโบรกเกอร์ส่วนลดเช่น Etrade และ Scottrade แต่ถ้า you039re ร้ายแรงเกี่ยวกับการซื้อขาย algorithmic, IB เป็นที่ของ it ที่ที่ InvestFly Success เป็นข้อมูลเกี่ยวกับการปฏิบัติและการทดสอบสมมติฐานและอัลกอริทึมของคุณ ทดสอบย้อนหลังทดสอบตลาดและเปรียบเทียบกับผู้อื่น ฉันชอบ Investfly - Virtual Stock Exchange กลยุทธ์การซื้อขายเกมแอ็กเซ็ตเทรดดิ้ง แต่มีตันของโปรแกรมที่ดีออกมี Idea Generation Don039t เริ่มต้นจากศูนย์พื้นดิน - ฉันชอบรับแนวคิดจาก Motif Investing (Online Brokerage, ไอเดียการลงทุน, การซื้อขายหุ้น) และ Alpha หา แต่มองภาพใหญ่และคิดว่าสิ่งเหล่านี้ใช้กับสมมติฐานของคุณอย่างไรและ สูตร ไชโยและโชคดี 4.5k Views middot ดู Upvotes middot ไม่ได้สำหรับการทำซ้ำอัปเดต 101w ago middot Upvoted โดย Patrick J Rooney 5 ปีอาชีพการค้าฉันมีความเชี่ยวชาญในขั้นสูง o เริ่มต้นด้วยพื้นฐานได้รับถือของ Amibroker (AmiBroker - Download) Amibroker มีภาษาที่ง่ายต่อการเรียนรู้และมีประสิทธิภาพในการทำ backtest engine ซึ่งคุณสามารถสร้างต้นแบบความคิดของคุณได้ ยังได้รับ Howard Bandy 039s หนังสือระบบการซื้อขายเชิงปริมาณ หนังสือเล่มนี้เป็นบทนำที่ดีมากสำหรับแนวคิดการพัฒนาเชิงปริมาณ คุณจะต้องมีความรู้พื้นฐานทางสถิติอย่างน้อย มีหลักสูตร MOOC ที่ดีมากมายสำหรับหลักสูตรนี้ฟรี เช่นหนึ่งสถิติ One - Princeton University Coursera It0 ยังคุ้มค่าต่อไปนี้ The Whole Street ซึ่งเป็น mashup ของบล็อก quant ทั้งหมดซึ่งหลายคนเผยแพร่ Amibroker code ด้วยไอเดียของพวกเขา จากนั้นการเรียนรู้ Python ของ Python (เรียนรู้ Python - Google Search) และการเรียนรู้หลักสูตร Stanford University Machine Learning ที่ดีเยี่ยมของ Andrew Ng0 ซึ่งใช้ฟรีกับ Coursera ถ้าคุณต้องการใส่อัลกอริทึมของคุณเองเพื่อทดสอบไซต์ที่ดีว่า Quantconnect หรือ Quantopian โชคดีกับการเดินทางส่วนหนึ่งมาจากคำตอบของ Alan Clement0 ในฐานะนักพัฒนาซอฟต์แวร์ในด้านการเงินสามารถเป็นนักพัฒนาซอฟต์แวร์ Quant ได้ 16.3k Views middot ดูคำ UpVotes middot ไม่ได้สำหรับการทำซ้ำโบรกเกอร์อะไร ฉันสามารถใช้เพื่อเริ่มต้นการซื้อขายกระดาษของฉันได้ฟรีวิธีการสร้าง Order Routing System สำหรับแพลตฟอร์มการค้าแบบอัลกอริธึมวิธีที่ทำกำไรได้ดีที่สุดคือขั้นตอนการซื้อขายหลักทรัพย์ที่ดีที่สุดคนเดียวที่สามารถทำกำไรได้จริงในการซื้อขายแบบอัลกอริธึม Python for Algorithmic trading โบรกเกอร์ที่ดีสำหรับการซื้อขายแบบอัลกอริธึมผมมีความเข้าใจที่มั่นคงเกี่ยวกับแอ็พพลิเคชัน stocksderivatives มีทักษะ Python ฉันต้องการพัฒนาระบบการซื้อขายแบบอัลกอรึทึมอัตโนมัติ ฉันจะเริ่มต้นสิ่งที่เป็นผลตอบแทนที่ดีที่สุดจากการซื้อขายขั้นตอนวิธีข้อมูลข้อมูลและวัสดุ (ldquocontentrdquo) มีไว้เพื่อจุดประสงค์ในการให้ข้อมูลและการศึกษาเท่านั้น เนื้อหานี้ไม่เป็นอย่างใดและไม่ควรถูกตีความว่าเป็นข้อเสนอการชักชวนหรือคำแนะนำในการซื้อหรือขายหลักทรัพย์ใด ๆ การตัดสินใจลงทุนใด ๆ ที่ทำโดยผู้ใช้ผ่านการใช้เนื้อหาดังกล่าวขึ้นอยู่กับการวิเคราะห์โดยผู้ใช้โดยไม่คำนึงถึงสถานการณ์ทางการเงินวัตถุประสงค์การลงทุนและความเสี่ยง ทั้ง KJTradingSystems (KJ Trading) หรือผู้ให้บริการเนื้อหารายใดของตนจะต้องรับผิดต่อข้อผิดพลาดใด ๆ หรือดำเนินการใด ๆ โดยอาศัยการกระทำดังกล่าว เมื่อเข้าถึงไซต์ KJ Trading ผู้ใช้ตกลงที่จะไม่แจกจ่ายเนื้อหาที่พบในที่นี้เว้นแต่จะได้รับอนุญาตเป็นพิเศษ ผลการปฏิบัติงานของแต่ละคนขึ้นอยู่กับแต่ละทักษะเฉพาะตัวความมุ่งมั่นในเวลาและความพยายาม นักเรียนที่แบ่งปันเรื่องราวของพวกเขายังไม่ได้รับการชดเชยสำหรับคำรับรองของพวกเขา เรื่องราวของนักเรียนยังไม่ผ่านการตรวจสอบโดย KJ Trading อย่างเป็นอิสระ ผลการค้นหาอาจไม่เป็นแบบฉบับและแต่ละผลลัพธ์จะแตกต่างกันออกไป 8203U. S คำจำกัดความที่รัฐบาลบังคับ - Commodity Futures Trading Commission การซื้อขายสัญญาซื้อขายล่วงหน้าและสัญญาซื้อขายล่วงหน้ามีผลตอบแทนที่มีนัยสำคัญ แต่ยังมีความเสี่ยงที่อาจเกิดขึ้น คุณต้องตระหนักถึงความเสี่ยงและยินดีที่จะยอมรับพวกเขาเพื่อลงทุนในตลาดฟิวเจอร์สและตัวเลือก อย่าค้าขายกับเงินที่คุณไม่สามารถจะเสียได้ เว็บไซต์นี้ไม่ใช่การชักชวนหรือเสนอซื้อฟิวเจอร์สหรือตัวเลือก BuySell ไม่ได้มีการระบุว่าบัญชีใด ๆ จะมีหรือมีแนวโน้มที่จะบรรลุผลกำไรหรือความสูญเสียที่คล้ายคลึงกับที่กล่าวไว้ในเว็บไซต์นี้ ผลการดำเนินงานที่ผ่านมาของระบบการซื้อขายหรือวิธีการใด ๆ ไม่จำเป็นต้องบ่งบอกถึงผลการดำเนินงานในอนาคต กฎ CFTC 4.41 - ผลการดำเนินงานที่สมมุติฐานหรือผลการดำเนินงานที่จำลองขึ้นมีข้อ จำกัด บางอย่าง ไม่ว่าจะเป็นบันทึกผลการดำเนินงานที่แท้จริงผลลัพธ์ที่จำลองไม่ได้แสดงถึงการซื้อขายตามปกติ นอกจากผลประกอบการที่ยังไม่ได้รับการดำเนินการแล้วผลลัพธ์อาจมีน้อยกว่าหรือมากกว่าที่จะได้รับผลกระทบหากผลกระทบใด ๆ ของปัจจัยตลาดบางอย่างเช่นการขาดสภาพคล่องโปรแกรมเทรดดิ้งแบบจำลองในเรื่องทั่วไปจะต้องเป็นไปตามข้อเท็จจริงที่ว่า พวกเขาได้รับการออกแบบด้วยประโยชน์ของ HINDSIGHT ไม่มีผู้ถือหุ้นรายใดแสดงว่าบัญชีใดจะเป็นประโยชน์หรือเป็นไปได้ที่จะทำกำไรหรือขาดทุนให้คล้ายคลึงกัน ข้อความรับรองที่ปรากฏบนไซต์นี้จะได้รับจริงผ่านการส่งอีเมลหรือความคิดเห็นเกี่ยวกับการสำรวจเว็บ เป็นประสบการณ์ของแต่ละคนสะท้อนถึงประสบการณ์ชีวิตจริงของผู้ที่ใช้ผลิตภัณฑ์และบริการของเราในลักษณะใดหรือบางส่วน อย่างไรก็ตามผลการค้นหาแต่ละรายการนั้นแตกต่างกันไป เราไม่ได้อ้างว่าเป็นผลลัพธ์ทั่วไปที่ผู้บริโภคจะได้รับโดยทั่วไป The testimonials are not necessarily representative of all of those who will use our products andor services. The testimonials displayed are given verbatim except for correction of grammatical or typing errors. Some have been shortened, meaning not the whole message received by the testimony writer is displayed, when it seemed lengthy or the testimony in its entirety seemed irrelevant for the general public. Email: kdavey at kjtradingsystems (c) Copyright - KJ Trading Systems. All Rights Reserved Worldwide. KJ Trading SystemsBuilding Algorithmic Trading Systems Sign up to save your library Develop your own trading system with practical guidance and expert advice In Building Algorithmic Trading Systems: A Traders Journey From Data Mining to Monte Carlo Simulation to Live Training . award-winning trader Kevin Davey shares his secrets for developing trading systems that generate triple-digit returns. With both explanation and demonstration, Davey guides you step-by-step through the entire process of generating and validating an idea, setting entry and exit points, testing systems, and implementing them in live trading. Youll find concrete rules for increasing or decreasing allocation to a system, and rules for when to abandon one. The companion website includes Daveys own Monte Carlo simulator and other tools that will enable you to automate and test your own trading ideas. A purely discretionary approach to trading generally breaks down over the long haul. With market data and statistics easily available, traders are increasingly opting to employ an automated or algorithmic trading system8212enough that algorithmic trades now account for the bulk of stock trading volume. Building Algorithmic Trading Systems teaches you how to develop your own systems with an eye toward market fluctuations and the impermanence of even the most effective algorithm. Learn the systems that generated triple-digit returns in the World Cup Trading Championship Develop an algorithmic approach for any trading idea using off-the-shelf software or popular platforms Test your new system using historical and current market data Mine market data for statistical tendencies that may form the basis of a new systemMarket patterns change, and so do system results. Past performance isnt a guarantee of future success, so the key is to continually develop new systems and adjust established systems in response to evolving statistical tendencies. For individual traders looking for the next leap forward, Building Algorithmic Trading Systems provides expert guidance and practical advice. The EPUB format of this title may not be compatible for use on all handheld devices. Publication Details Publisher: Wiley Publication Date: 2014 Series: Wiley Trading Available in: United States, Singapore Kindle Book OverDrive Read Adobe PDF eBook 29,6 MB Adobe EPUB eBook 4,2 MB Kevin Davey (Author) KEVIN J. DAVEY is a professional trader and a top-performing systems developer. He generated triple-digit annual returns of 148 percent, 107 percent, and 112 percent in three consecutive World Cup Championships of Futures Trading174 using algorithmi. Building Algorithmic Trading Systems: A Traders Journey from Data Mining to Monte Carlo Simulation to Live Trading Develop your own trading system with practical guidance and expert advice In Building Algorithmic Trading Systems: A Traders Journey From Data Mining to Monte Carlo Simulation to Live Training . award-winning trader Kevin Davey shares his secrets forMore Develop your own trading system with practical guidance and expert advice In Building Algorithmic Trading Systems: A Traders Journey From Data Mining to Monte Carlo Simulation to Live Training . award-winning trader Kevin Davey shares his secrets for developing trading systems that generate triple-digit returns. With both explanation and demonstration, Davey guides you step-by-step through the entire process of generating and validating an idea, setting entry and exit points, testing systems, and implementing them in live trading. Youll find concrete rules for increasing or decreasing allocation to a system, and rules for when to abandon one. The companion website includes Daveys own Monte Carlo simulator and other tools that will enable you to automate and test your own trading ideas. A purely discretionary approach to trading generally breaks down over the long haul. With market data and statistics easily available, traders are increasingly opting to employ an automated or algorithmic trading system--enough that algorithmic trades now account for the bulk of stock trading volume. Building Algorithmic Trading Systems teaches you how to develop your own systems with an eye toward market fluctuations and the impermanence of even the most effective algorithm. Learn the systems that generated triple-digit returns in the World Cup Trading Championship Develop an algorithmic approach for any trading idea using off-the-shelf software or popular platforms Test your new system using historical and current market data Mine market data for statistical tendencies that may form the basis of a new system Market patterns change, and so do system results. Past performance isnt a guarantee of future success, so the key is to continually develop new systems and adjust established systems in response to evolving statistical tendencies. For individual traders looking for the next leap forward, Building Algorithmic Trading Systems provides expert guidance and practical advice. Less Get a copy Friends Reviews To see what your friends thought of this book, please sign up . Community Reviews Justin Tirrell rated it it was amazing Juan Now rated it it was amazing about 2 years ago Gabriel Becerril Parreo rated it it was amazing Tang rated it it was amazing about 2 years ago Awesome stuff I am using the materials of this book as the backbone for my trading systems Neelesh rated it liked it over 2 years ago Roger rated it it was ok over 1 year ago Richard rated it really liked it Duong Nguyen rated it it was amazing about 1 year ago Ghost rated it really liked it Greg Vogel rated it it was amazing about 1 month ago Other Books by this Author Building Winning Algorithmic Trading. The English Imaginaries Building Algorithmic Trading Systems. Building Algorithmic Trading Systems. Moscow Gold The Soviet Union and the. by Paul Anderson
Comments
Post a Comment